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ABSTRACT
Phosphine must be used effectively to prevent the development of resistance in stored
grain pests by guaranteeing the required concentration and exposure period. Where
resistance exists, phosphine can still be used to give control by the use of longer
exposures and higher concentrations, as appropriate. The treatment of grain in silos
should not normally present control problems but the treatment of floor-stored grain
bulks presents difficulties due to sealing deficiencies. A practical system for treating
these has been developed. This utilises dosing from cylinders of phosphine in nitrogen
downstream of a centrally-placed circulation fan. The fan is used to generate uniform
distribution but, more importantly, to provide a pressure gradient within the bulk.
Grain near to the fan is at a slight negative pressure and the flow from the fan is
distributed by piping to locations at the periphery of the bulk where they create a
small positive pressure. The recirculation flow rate can be increased to replenish the
concentration where it is depleted by the effect of wind pressure on the bulk. The
system aims to reduce sensitivity to climatic effects and, consequently, phosphine loss
by outleakage and inleakage of air and dilution of phosphine. Gas flow modeling,
using computational fluid dynamics, was used to predict leakage and optimise the
system.

INTRODUCTION

Resistance to phosphine
Resistance to phosphine (PH3) in stored-product insects is a reality with twelve
species being implicated to date. This is an unfortunate drawback since PH3 has,
for almost five decades, been shown to be an ideal fumigant for the disinfestation
of stored grains and other commodities. The mechanisms involved in the mode
of action and, at least some, of the resistance mechanisms are understood
(Chaudhry, 1997). There have been many surveys and descriptions of individual
resistance levels, some of which have been reviewed by Chaudhry (1997). We
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have now arrived at a position where dosage schedules designed for the control
of susceptible strains have become unreliable in some situations due to resistance.
At its worst, the problem is so widespread that almost every store surveyed has
resistant populations, as is the case in Morocco (H. Ben Halima, pers. comm.),
though in some countries the problem is less severe albeit with a significant
incidence of resistant strains. Manufacturers of PH3-releasing formulations must
bear a partial responsibility in that, often, there has been poor product
stewardship. It is important that new cylinderised formulations should be used
carefully to prevent them from contributing to the selection for resistance rather
than being used to overcome it. The emergence of this problem comes at a time
when we will see more PH3 fumigation due to the demise of methyl bromide
(MB) as a fumigant for most uses under the Montreal Protocol. This has a two-
fold effect. Firstly, there will be more PH3 fumigations and, therefore, more low
standard fumigations leading to resistance selection. Secondly, MB itself will not
be available to exert an unintentional but important counter-selection pressure. In
addition, there is continual scrutiny of the effect of PH3 on the operator, along
with moves to increase fumigation exclusion zones and to reduce occupational
exposure standards. This latter proposal goes against the need for higher
concentrations and longer exposure periods to combat resistance (Price and
Mills, 1986).

Improving fumigation methods
In some situations, for example the fumigation of stacked packaged commodities
under gas-proof sheets, there is a general optimism that a properly constructed
and sealed stack can enable gas concentrations and, particularly, exposure
periods for the control of resistant strains to be achieved, though, even here, care
is necessary. There is already interest in applying vacuum tests on sealed stacks to
verify the level of seal (Navarro, 2000). The same methods cannot be applied to
unsealed silos, which suffer gas loss mainly through the chimney effect.
SIROFLO® and SIROCIRC® continue to be trialed in order to combat leakage in
this situation (Hou Jun et al., 2000). The Central Science Laboratory, U.K., has
dealt with the problem of silo fumigation by re-circulation with continual dosing
(Wontner-Smith et al., 1999). This method was demonstrated to produce higher
concentrations while using less PH3 per tonne than the SIROFLO technology,
which utilises a flow-through of PH3. It is also poses less safety problems.
However, the problem of the effective fumigation of horizontal grain storages
remains.

Phosphine distribution in horizontal storages
Good PH3 distribution can be a problem. Records from farm stores show that
initial grain temperature varies throughout a bulk. Temperature gradients will
give rise to interstitial gas movement and, over time, the temperature gradients in
dry grain can be expected to reduce as the grain tends towards the same
temperature. These internal gas movements are unpredictable and cannot be
relied on to generate uniform distribution of PH3 to all points in a bulk. The
introduction of a steady pressure gradient within the bulk will dominate the
natural air movements and ensure effective delivery of PH3 throughout the bulk.
Pressure gradients of less than 1 Pa!m-1 can be effective. Research has been
carried out using recirculation methods to produce a more uniform gas
distribution by a form of ‘closed loop’ fumigation as used in silos (Noyes, et al.,
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2000) or the Phyto-Explo system used by Chakrabarti et al. (1994) in a floor
store.

Leakage from horizontal storages
Previous studies by Banks and Annis (1984) identified the principal mechanisms
of air exchange between a sealed grain bulk and the surroundings. The present
study seeks to confirm the relative importance of these mechanisms with a view to
minimising their effect on the loss of PH3 from a grain bulk.

Gas flow within a porous medium (bulk grain) only takes place when a
pressure gradient exists between two points or boundaries. At low gas flow rates
the interstitial gas quickly comes into temperature equilibrium with the grain so
its density is held constant. The density of ambient air outside the bulk boundary
varies as its temperature changes through the day. This density difference gives
rise to a pressure gradient across the bulk boundary. It will cause flow to take
place through any holes in the boundary.

Barometric pressure changes result in expansion or contraction of the
interstitial gas volume. These changes will result in pressure differences that will
cause flow across the bulk boundary.

Wind interacts with buildings containing grain bulks and can potentially
generate substantial pressure gradients across the exposed face of the grain mass.
Atmospheric pressures above and below those in the grain bulk are generated by
high wind on structures such as sheds (Hoerner, 1965; British Standards Institute,
1972).

Floor stores are notoriously difficult to seal, particularly when fitted with a
ventilation system. It is difficult to get storekeepers to incur expense for an
occasional treatment. To get an effective level of seal it is often necessary to line
walls and bulkheads with a polyethylene sheet before filling.

Implications for the selection for resistance
Even if attempts at sealing take place, the situation arises where a generally
adequate treatment suffers from localised leakage of PH3 in a bulk, which
generally experiences a good treatment. Of greater importance, in terms of insect
survival and possible selection for resistance, is the local dilution of PH3 by
ingress of air. This can lead to a wide range of concentrations and even shorter
exposure periods near to leaks. Some of these doses will be selective. Of these,
some will be selective in favour of heterozygous resistants, which are very similar
in tolerance to susceptible insects (Li and Li, 1994; Mills and Athie, 2000). This,
in turn, will increase the frequency of the resistance gene(s).  The very fact that a
resistance with an incompletely recessive major gene develops at all is indicative
of either, at worst, generally low standards or, at best, variable standards in a
particular fumigation. Once there are a significant proportion of homozygous
resistant individuals present the selection can continue so that the population
becomes wholly resistant. It may be that we should not be using PH3 in sub-
standard storages in order to prevent the development of resistance as suggested
by Zettler (1993). In many situations this is not a viable option, especially where
grain weight loss is occurring or where there is the urgent need in order to
market the grain. These storages need to be brought up to the required standard
or new fumigation methods introduced. Variable gas concentrations in a
generally well sealed storage can be corrected if we apply the same effort that we
apply to describing and understanding the resistance problem in the laboratory.
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The loss of PH3 can be partly overcome by the use of continuous or automated
dosing of cylinderised formulations of PH3 in liquid carbon dioxide (CO2)
(ECO2FUMER) or in compressed nitrogen (N2) (FRISINR) to lengthen exposure
periods. These are certainly of benefit but their use alone (Bell, et al., 1991)
without a consideration of application technology cannot prevent the problem of
localised dilution. To tackle this problem requires a new direction and a
sophisticated engineering solution. This was the aim of Winks and Russell (1994)
in testing SIROFLO in unsealed horizontal storages but they concluded that
oscillating concentrations resulted from ‘chimney forces’ causing ingress of air
down the shed walls when the ambient air was cooler than that in the bulk during
the night.

The aim of the present work is to develop a new fumigation method, which
aims to guarantee, as far as is possible, the necessary parameters for a successful
fumigation of horizontal storages even in windy conditions. A multi-disciplinary
research team, which harnesses gas flow modeling using a Computational Fluid
Dynamic (CFD) model, engineering and fumigation expertise is working towards
this goal. This method is targeted to prevent the development of resistance by
achieving the correct fumigation parameters to control susceptible strains (Hole
et al., 1976) and resistant strains (Price and Mills, 1986). It will enable the
implementation of a strategy to control resistant insects (Mills and Athie, 2000)
where they are suspected after failed fumigations or are known to occur after the
application of a rapid test for diagnosis (Savvidou et al., 1994).

MATERIALS AND METHODS

Computational Fluid Dynamics (CFD) model
The purpose of computational modeling was to obtain a detailed view of the gas
flow within the grain bulk under controlled conditions and so help to interpret
the experimental results.  The CFD technique was used to model the gas flow and
predict the gas velocities, pressures and temperatures throughout the store.  The
technique, which is well established, subdivides the store geometry into cells in
which the differential equations, which describe heat and mass transfer are solved
numerically.  The CFD package CFX 4.2 (CFDS, 1997), was used to create the
cells and solve the linearised equations.  Body-fitted coordinates are used to
reproduce complex shapes.

The dimensions of the store, the covering sheet, and the inlets and outlets were
known and reproduced in the CFD model.  The number of cells used for a 250
tonne capacity, sloping-fronted store was approximately 750,000.  Small cells,
about 30 mm thick, were placed near leakage points.  The grain was treated as a
porous medium with a void ratio (porosity) of 0.4.  Leakage was modeled by
ascribing a porosity of 0.005 (cf. grain = 0.4) to the cells adjacent to the leakage
points.  The value for the porosity was derived from small-scale grain bin trails
carried out by ADAS Consulting Ltd, and corresponds to an average leakage gap
of 0.15 mm.

Physical properties of the grain bulk: The properties of the grain, in this case
wheat at 13% m.c. (w.b.) (ASAE, 1995), are given in Table 1.  The model is
applicable to any grain type if the corresponding properties are known.  It is
assumed that these are constant and uniform throughout the store within the
operative range.  The properties of the gases involved, N2, CO2, O2 and PH3, have
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been taken from Bejan (1993), whilst diffusion coefficients can be found in Bird
et al. (1960).

The equation relating pressure gradient to gas flow velocity in the grain was
taken from ASAE Standards 1992, because it applies in the low velocity regimes
encountered in this work.  However, because the natural alignment of grain
kernels produces less resistance horizontally (Kumar and Muir, 1986), a 15%
difference in resistance between horizontal and vertical directions was assumed.

TABLE 1
Physical properties used in the CFD model

Volume porosity 0.4
Bulk density 757.16
PH3 Diffusion coefficient 1.592_10-5

Boundary conditions: The plastic sealing sheet covering the grain was modeled
as a thin membrane impervious to gas flow. Assuming no wind effect on the
store, the pressure at all leaks was set to a standard atmosphere.

The store and bulk: The trial described was the culmination of a series of trials in
the same horizontal storage at the Central Science Laboratory. The dimensions of
the store are given in Fig. 1. The store was fitted with a ventilated floor and the
left hand wall was the concrete plenum chamber for this system. The lateral ducts
were sealed with Bromotek laminated sheet from Lawson Mardon Packaging
Ltd., UK and aerosol adhesive at the slides in the plenum chamber and the tight-
fitting doors from this were closed. The right hand wall was of corrugated metal
sheets, the joints of which had been carefully sealed with silicone sealant. Wooden
bulkheads formed the front and rear wall of the bulk to a height of 3 m. These
were sealed internally with 125 µm polyethylene film, taking particular care in
the corners and over the floor in the bay for approximately 1 m. Feed wheat
(250 tonnes) was put into the store and fumigated in other experiments involving
different bulk shapes and recirculation systems. For the present trial it was graded
into a slope, being 2.5 m deep at the rear and 1.5 m deep at the front.

The recirculation system: Two polypropylene spark-proof speed controlled fans
were mounted in a 600 mm diameter chamber that also formed a suction and
delivery manifold.  Two fans were used to make it possible to remotely reverse
the flow in the system when required.

The fans were calibrated by measuring the total flow from the delivery
manifold outlets with a vane anemometer at a range of fan speeds.
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Fig. 1. Plan of the grain bulk  (10 m x 13.5 m) used in trial with 8 blowing and sucking
ducts showing the re-circulation system and sampling positions.  (Not to scale).

The manifolds each had 8 outlets connecting to 100 mm i.d. flexible
polypropylene pipe (land drainage pipe).  All 16 pipes were connected to 1.5 m
long injection or suction tubes.  These tubes were perforated along their entire
length and open at the bottom end and were inserted into the grain using a
vacuum cleaner at the locations shown in Fig. 1.  The tubes from one manifold
were linked to a ring of tubes near the center of the bulk and those from the
other manifold were connected to the tubes at the periphery of the bulk. The
system could be run to produce sucking (negative pressure) in the centre and
blowing (positive pressure) at the perimeter or vice versa. These pressure
differences were intended to result in a continuous flow between the edges and
the centre of the bulk. The whole recirculation system was located under a 125
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µm polyethylene joined with aerosol adhesive sheet over the bulk to minimise the
chance of leaks to atmosphere from the recirculation ducts. Round the perimeter,
the sheet was glued to the wall sheets, where possible, and pushed into the grain
elsewhere. These latter locations were a possible source of leakage.

Fig. 2. Three-dimensional schematic of the grain bulk showing the locations of the blowing
and sucking ducts.

Phosphine dosing and measuring: The bulk was dosed from cylinders of
FRISIN® (1.7 % v/v or 2.4 % w/w PH3 in compressed N2). A dosing tube led from
the cylinder regulator to a flowmeter to control the flow rate and thence into the
fan suction and was quickly distributed to the edges of the bulk and back to the
fan. A record was kept of the amount of FRISIN, and hence phosphine, used in
the trial. Phosphine concentrations were monitored in the locations in Fig. 1 at
the bottom and surface. The concentrations were monitored through nylon 6 gas
sampling lines which were taken to a mobile laboratory and connected to a
Hewlett Packard 5890A gas chromatograph (GC) fitted with a photo-ionisation
detector, an automatic gas sampling loop, two 16-position gas sampling valves
and a 1 m x 3.2 mm OD glass-lined stainless steel column packed with Porapac
QS. Samples of gas were drawn automatically down each sampling line in turn
using a diaphragm pump and the concentration analysed against a cylinderised
standard of PH3 in N2.

Pressure, temperature and wind monitoring: Continuous pressure monitoring
in and around the bulk was intended to confirm the leakage mechanism in
relation to variations in climatic conditions (wind and temperature). A series of
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air pressure profiles through selected sections of the bulk were intended to
identify the recirculation paths as a check to the CFD model.

An electronic micro-manometer using a pressure transducer (Furness Controls
Ltd., FCO 44) with a working pressure range of +/- 20 Pa was used. The single
transducer was multiplexed to monitor up to 6 separate points within the trials
area. The principal locations investigated were top and bottom of the bulk and
the windward and leeward faces just outside the bulk. Pressure measurements
were made differentially to a sealed reference chamber located under the sealing
sheet on top of the grain bulk. This reference chamber was equilibrated with
atmosphere for a short period during each multiplexer cycle (every 60 min). The
ambient pressure measurements were made using a static probe to minimise the
dynamic effects of wind. The measurements were made at 10 sec intervals and
averaged over a 2 min period. Recordings were made at 2 min intervals. The
barometric pressure was regularly recorded during the trial.

Air pressures within the grain bulk were mapped with the fan running at full
speed prior to the trial to discover the pattern of the recirculation flows and to
identify regions of the bulk, which were at risk from in-leakage of outside air.
Measurements were made using the electronic micro-manometer and a pressure
probe thrust into the grain bulk from top to bottom in 0.5 m increments.
Evidence from these measurements was used to identify the best places for the
recirculation suction and injection ducts.

Ambient temperatures and the temperatures at position F at the surface and
bottom in the grain were monitored using copper-constantan thermocouples. Air
speed inside the building above the grain bulk was also monitored using a cup
anemometer. Air speed and temperature data was recorded using a Yokogawa
HR2300 hybrid chart recorder.

Running the trial: The trial was run so as to observe the effects of manipulating
the fan speed and the rate of gas input in order to assess the effect on the PH3
concentrations in the bulk and the pressures at locations monitored. The fan was
switched on at an initial flow rate of 4.85 m3 min-1 and the initial gas flow was set
at 3 L min-1  (0.0774 g PH3 min-1). The PH3 concentration was monitored for a
period of about 3 days for a range of fan speeds with the system blowing to or
sucking from the periphery. The input rate for PH3 was also varied. The lapsed
times from the start, for changing these parameters are given in Table 2.

The trial ran for a total of 623 h (26 d) with the fan switched off after 574 h
and the PH3 flow at the end. The decay in the PH3 concentration was also
monitored. A total of 50.85 kg of FRISIN equivalent to 1.23 kg of PH3 was used
or about 4.9 g/tonne in order to run the trial for enough time to monitor the
effects of changes in recirculation rate, fan direction and gas input rates. The trial
was not designed to achieve any particular exposure period but was run until the
effect of experimental variables could be assessed under stable wind conditions as
far as possible.

TABLE 2
Dosing and recirculation parameter changes at various lapsed times from the start of the

fumigation
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Lapsed time (h) Phosphine input rate
(g min-1)

Recirculation rate (m3 min-1)
+ is blowing to perimeter

- is sucking from perimeter
0 0.0774 + 4.85

71 0.0774 + 3.59
148 0.0451 + 3.59
168 0.0322 + 3.59
219 0.0322 + 1.83
338 0.0322 -  1.81
383 0.0258 -  3.28
457 0.0258 - 0.97
506 0.0258 + 0.82
574 0.0258 0
623 0 0

RESULTS AND DISCUSSION

CFD predictions
The 250 tonne store with retaining walls on three sides and a sloping front face, is
shown schematically in Fig. 3.  The store is assumed to be symmetrical and one
half only has been modeled.  Figure 3 shows a recirculation system with a suction
pipe in the grain bulk centre and injection pipes in each corner.  Since the
positions of leaks were not known, a ‘worst case’ leakage condition was assumed.
Leakage paths were assumed to exist at all edges of the covering sheet and at all
edges of the rear retaining wall.  The recirculation rate was 4.79 m3 min-1 (into
the whole store).  The results show that the pressure distribution created by the
recirculation system itself leads to gas exchange between the store and its
environment.  Figure 3 shows the volume of grain in which the PH3 concentration
is less than 0.1 g m-1, which amounts to 10.5% of the total volume. To maintain a
phosphine concentration of 0.3 g.m-1 in the injected gas, 0.206 g min-1 of PH3
must be added.  Reducing the recirculation rate reduces the leakage rate but does
not reduce the affected volume.  Hence, reducing the recirculation rate reduces
the quantity of phosphine to be replaced.

There is evidence from the experimental results that the leakage shown in
Fig.!3 at the sheet side was present in the tests, due to the difficulty of sealing the
sheet against a corrugated wall.  However, tests with an SF6 based leak detector
suggest that the edges of the sheet are generally well sealed.  Figure 4 shows the
result from a simulation with the same recirculation rate as before but with
leakage paths assumed to exist at the edges of the rear retaining wall only.  The
volume of grain in which the PH3 concentration is less than 0.1 g!m-1 amounts to
1.4% of the total volume, and the additional PH3 required is now only 0.034
g!min-1.  It is interesting to note that the pressure distribution and hence the flow
pattern near the floor, has changed significantly.
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Fig. 3. Predicted leakage into a 250 tonne grain store employing a phosphine recirculation
system consisting of one central suction pipe and two injection pipes.  The affected grain
volume is shown by the 0.1 g m-3 concentration iso-surface.  Leakage is due to the pressure
distribution created by the recirculation system, recirculation rate 4.79 m3 min-1.  Leakage
paths are assumed at all the sealing sheet edges, and at the side and floor joints of the rear
retaining wall.

Figures 3 and 4 show that the effects of a 1 m sec-1 wind blowing over the
store have been included in the simulation.  The pressures created by the wind
were calculated in a separate model.  The pressures at the leaks, relative to a
downstream datum, were less than 0.5 Pa and the predicted effect of a 1 m sec-1

wind on leakage rates is negligible.  The ‘wind effect’, which is evident in the
experimental records as a decrease in PH3 concentration, is more likely to be due
to barometric pressure changes, which have been measured at +/- 300 Pa or more,
rather than wind alone.  A change in barometric pressure will cause gas to enter
or leave the enclosure by virtue of a change in specific volume.  The
recirculation system transit time is approximately 2 h at 4.79 m3 min-1, hence PH3
concentration recovers fairly quickly. This time would be longer in the most
extended flow paths.

The provision of injection pipes at the centre of each side of the grain bulk, in
addition to those in the corners, has the effect of reducing the injection pressure
and the flow pattern but not the overall leakage rate.  This seems to be because
the negative pressure at the central extraction pipe remains largely the same.
Reducing the negative pressure at the centre by using a distributed array of
suction pipes appears to be a more effective means of leakage control and this
was used in the trial.
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Fig. 4. Predicted leakage into a 250 tonne grain store employing a phosphine recirculation
system consisting of one central suction pipe and two injection pipes.  The affected grain
volume is shown by the 0.1 g m-3 concentration iso-surface.  Leakage is due to the pressure
distribution created by the recirculation system, recirculation rate 4.79 m3 min-1.  Leakage
paths are assumed at the side and floor joints of the rear retaining wall.

Findings from the model
 (i) CFD modelling of a floor store with recirculation has simulated the
interactions between outside wind and internal gas flows, and predicted the
PH3 concentrations in the bulk.
 (ii) Leakage into and out of the store is caused partly by the recirculation
system itself.  This can be minimised by the correct distribution of extraction
and injection pipes.
 (iii) The quantity of PH3 required to replace losses as a result of recirculation
can be minimised by using a low recirculation rate.
 (iv) Assuming a reasonably well sealed store, rapid changes in barometric
pressure are more likely to cause changes in PH3 concentration than wind
pressure.
 (v) After adverse weather, PH3 concentration throughout the bulk will recover
most quickly using a high recirculation rate.

Phosphine concentrations and dosage rate
The trial aimed to produce a concentration in the grain of 0.1 g m-3  (c. 70 ppm)
to demonstrate the logistics of the system. It should be noted that increases in the
dosing rate will ensure higher concentrations and any exposure period can be
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accommodated provided that the supply of source gas does not run out. A
manifolded bank of cylinders would ensure this does not happen.

The concentration-time curves are given in Fig. 5 for the best, worst and
average concentrations.
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Fig. 5. Highest, Lowest and average concentrations of phosphine in the bulk against time.

During the first 120 hours the winds were far too strong for any fumigation to be
successful. Following this there was a period of normal weather where wind
speeds were no more than moderate and this lasted for the rest of the trial.
During this time the system worked well when the system was used to deliver gas
to the periphery. This permitted a reduction in the circulation rate from
4.85!m3!min-1 to 1.83 m3 min-1 and a reduction in the dosing rate from 3.0 L!min-1

to 1.0 L min-1 or 0.0774 to 0.0258 g PH3, (Table 2). With the exception of one
position, concentrations substantially greater than 0.1 g m-3 min-1 were obtained
everywhere except for a brief period where the flow of FRISIN  was interrupted
after 220 hours.

Between 220 hours and 340 hours the circulation system was set at
1.83!m3 !!min-1 and concentrations in excess of 0.1 g m-3 where obtained
everywhere including the weakest position. This appears to be the optimum flow
rate for this bulk producing minimum leakage due to the circulation system
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while still providing an even distribution of gas. When the flow rate was reduced
to 0.82 m3 min-1 a less even distribution of gas was obtained.

A reversal of the direction of flow was used at a range of flow-rates but, as
expected, this allowed a less even distribution with some high and low
concentrations caused by air being sucked in from the edge of the fumigation
enclosure (Table 2 and Fig. 5).

Leakage control
It had been envisaged that it would be possible to generate a variable positive
pressure at the edge of the bulk to balance pressures due to wind and thus
minimise gas exchange with the bulk. Extensive pressure measurements failed to
show the existence of systematic pressure gradients from windward to leeward of
the bulk. There was evidence from the average PH3 concentration that systematic
increases in the circulation rate resulted in increased leakage of PH3. This effect
may be explained by a leakage path over the top of the bulk under the sheet to
the centre surface which is at negative pressure and a balancing out-flow at the
sheet edge where the pressure is positive.  Larger scale bulks may allow the cover
sheet to make a better seal at the grain surface so minimising this recirculation
path.

Understanding the leakage mechanism
The measured variation in PH3 concentration from earlier trials had no clear
simple link with climatic variations. The recirculation rates were measured and
found very low. There was evidence that density differences between the air
within the bulk and ambient was generating a pressure gradient that could cause
vertical flow either upwards or downwards through the bulk. Dynamic pressures
due to the wind did not appear to be generating pressure differences, which
would cause the levels of PH3 loss that had been observed during periods of high
wind. Changes in barometric pressure could not be exclusively linked to leakage
events.

The introduction of a sealed reference for the pressure measurements revealed
a far from steady or smooth movement in barometric pressure. During calm
periods there was very little short-term fluctuation in the pressure but during
windy periods the pressure cycled through as much as 20 Pa (typically 8-12 Pa)
with a period of about 4-5 min. Exchange between the air in the bulk and the
surrounding atmosphere takes place as a result of small but repeated volume
changes in the air. When the pressure rises the air in the bulk is compressed and,
if it is assumed that the boundary of the bulk is rigid, a small volume of outside
air must move into the bulk diluting the PH3. When the pressure falls again the
reverse occurs, the air in the bulk expands and some of it moves out through the
bulk boundary taking some of the PH3 with it. This process accounts for the
leakage seen during windy periods.

A period of time under stable conditions was examined in detail (Fig. 6) to
compare the diurnal pressure variations and the resulting phosphate
concentrations at the worst position (G, top) where there appeared to be a leak in
the building structure.
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Fig. 6. The effect of pressure and temperature difference on phosphine leakage.

Future possibilities
The dosing system appears to have advantages over SIROFLO in that it uses less
gas to achieve higher concentrations (Wontner-Smith et al., 1999), an important
factor when dealing with tolerant pest species or resistant strains. It is also more
efficacious at the bulk periphery. This is vitally important since fumigations are
normally single events with the aim of controlling the entire pest population to
avoid expensive re-fumigation. Ingress of air at the periphery produces a PH3
concentration gradient from very low to fully effective concentrations.
Intermediate concentrations will be selective doses for the various resistant
genotypes so that fumigation failures have serious long-term consequences in
terms of resistance development as well as being immediate, often economic,
failures. It is not an economic option to ensure the survival of some susceptible
genes in the population, even if this were technically feasible. We must continue
to aim for complete control with the risks of increasing the resistance problem.
This system requires further development in order to optimise the blowing duct
spacings for different bulk shapes and it is hoped that this can be pursued in a
further project.

For bulks of several thousand tonnes we see the need for multiples of this
system, each one dealing with a sector of the bulk, perhaps with a series of fans
up the mid-line of the bulk. A dosing economy could be achieved by the
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incorporation of the CSL automated dosing system PH3 (Wontner-Smith et al.,
1999). This would dose individual fans on demand based on the feedback of
concentrations measured at key locations in the grain or in a duct downstream of
the fan. It may be that a combination of SIROFLO and this system would be
more beneficial than each used singularly.

CONCLUSION

The new PH3 dosing system will preserve PH3 concentrations at all locations, even
at the bulk periphery, under conditions of moderate winds but it will not cope
with strong winds. It will be necessary to extend the exposure period beyond that
recommended at present in order to ensure an effective treatment under stormy
conditions. The additional time required will be the subject of further research.
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